KRA D

ATTESTATION OF CONFORMITY

Issued to:

Ningbo Sunways Technologies Co., Ltd.

No. 1, Second Road, Green Industrial Zone, Chongshou Town 315334 Cixi, Ningbo,

Zhejiang, P.R. China

For the product:

Hybrid inverter

Trade name:

sunways

Type/Model:

STH-3.6KTL-HSS; STH-3.6KTL-HS; STH-4.2KTL-HS; STH-4.6KTL-HS;

STH-5KTL-HS; STH-6KTL-HS; STH-7KTL-HS; STH-8KTL-HS

Ratings:

See Annex

Manufactured by:

Ningbo Sunways Technologies Co. Ltd.

No. 1, Second Road, Green Industrial Zone, Chongshou Town 31,5334/Cixi, Ningbo,

Zhejiang, P.R. China

Requirements:

G99 Issue 1 - Amendment 6:2020

(Requirements for Type A Generating Module)

This Attestation is granted on account of an examination by DEKRA, the results of which are laid down in a confidential file No. 6111291.50

The examination has been carried out on one single specimen or several specimens of the product, submitted by the manufacturer. The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

Arnhem, 3 September 2021

/ Number: 6111291,01A00

DEKRA Testing and Certification (Shanghai) Ltd.

Kreny Lin Certification Manager

© Integral publication of this attestation and adjoining reports is allowed

Page 1 of 10

DEKRA Testing and Certification (Shanghai) Ltd. 3F #250 Jiangchangsan Road Shibei Hi-Tech Park, 200436 Jing'an District, Shanghai, China T +86 21 6056 7666 F +86 21 6056 7555 www.dekra-product-safety.com

Kreny lin

Operating temperature range: - 30°C to + 60°C

Protective class: I

Ingress protection rating: IP65

Power factor range (adjustable): 0.8 leading...0.8 lagging

Overvoltage category: III(Mains), II(DC)

Operating altitude: 3000m Inverter Topology: Non-isolated

STH-3.6KTL-HSS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A, Isc PV: 20 A

Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 3600 W, Max. AC output apparent power 3960 VA, Max 18 A

STH-3.6KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 3600 W, Max. AC output apparent power 3960 VA, Max 18 A

STH-4.2KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 4200 W, Max. AC output apparent power 4600 VA, Max 21 A

STH-4.6KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 4600 W, Max. AC output apparent power 4600 VA. Max 21 A

STH-5KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 5000 W, Max. AC output apparent power 5500 VA, Max 25 A

STH-6KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 6000 W, Max. AC output apparent power 6600 VA, Max 28.7 A

STH-7KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 7000 W, Max. AC output apparent power 7700 VA, Max 35 A

STH-8KTL-HS:

PV input: Max 600 Vdc, MPPT voltage range: 100-550 Vdc, Max 15A/15A, Isc PV: 20 A/20A Battery: Voltage Rang 85-500 Vdc, Max charge and discharge current: 30/30 A, Battery type: Li-Ion AC output: 230 Vac, 50 Hz, Rated AC output active power 8000 W, Max. AC output apparent power 8000 VA, Max 36.3 A

G99/1-6 Form A2-3 Compliance Verification Report-Test for Type A Inverter

Extract form test report number.:

6111291.50

1. Operating Range: Four tests should be carried with the Power Generating Module operating at Registered Capacity and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

Test 1

Voltage = 85% of nominal (195.5 V),

Frequency = 47 Hz,

Power Factor = 1.

Period of test 20 s

Test 2

Voltage = 85% of nominal (195.5 V),

Frequency = 47.5 Hz,

Power Factor = 1.

Period of test 90 minutes

Test 3

Voltage = 110% of nominal (253 V),

Frequency = 51.5 Hz,

Power Factor = 1.

Period of test 90 minutes

Test 4

Voltage = 110% of nominal (253 V),

Frequency = 52.0 Hz.

Power Factor = 1,

Period of test 15 minutes

Test 5 RoCoF withstand

Confirm that the **Power Generating Module** is capable of staying connected to the **Distribution Network** and operate at rates of change of frequency up to 1 Hzs⁻¹ as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site.

Model: STH-8KTL-HS

Test 1					P
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Tin	
195.89	47	7082.71	0.9969	20	
Test 2					Р
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Tin (Minute	
195.89	47.50	7083.10	0.9969	90	
Test 3					P
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Tin (Minute	
253.67	51.50	7999.77	0.9967	90	
Test 4					P
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Tin (Minute	
253.04	51.99	7957.07	0.9937	15	-

Test 5				P
Measured Voltage (V)	Ramp range	Test frequency ramp	Test Duration	Confirm no trip
195.5	47.0 Hz to 52.0 Hz	+1 Hzs-1	5.0 s	No trip
253.0	52.0 Hz to 47.0 Hz	-1 Hzs-1	5.0 s	No trip

2. Power Quality - Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Module**s of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

N/	loc	0	•	S	다	-1	่ยเ	ΚТ	1 _	Н	5
1 V	100			\circ		1-	OI	\ I			\circ

Power G	Generating Module	rating per	8.0	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)	
Harmo nic	At 45-55% of Reg Capacity	istered	100% of Registere	d	Limit in BS EN 61	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.0792	0.2277	0.0691	0.1987	8%	8%
3	0.2468	0.7095	0.4447	1.2785	21.6%	Not stated
4	0.0300	0.0862	0.0569	0.1636	4%	4%
5	0.1896	0.5451	0.2969	0.8536	10.7%	10.7%
6	0.0116	0.0333	0.0455	0.1308	2.67%	2.67%
7	0.1809	0.5200	0.2441	0.7018	7.2%	7.2%
8	0.0158	0.0454	0.0181	0.0520	2%	2%
9	0.1480	0.4255	0.2065	0.5937	3.8%	Not stated
10	0.0108	0.0310	0.0114	0.0328	1.6%	1.6%
11	0.0896	0.2576	0.1588	0.4566	3.1%	3.1%
12	0.0121	0.0347	0.0126	0.0362	1.33%	1.33%
13	0.0606	0.1742	0.1277	0.3671	2%	2%
THD		2.394		1.998	23%	13%
PWHD		1.400		1.570	23%	22%

Model: STH-3.6KTL-HS

Power G phase (r	enerating Module	rating per	3.6	kVA	Harmonic % = Measured Va (A) x 23/rating per phase (k)		
Harmo nic	At 45-55% of Reg Capacity	istered	100% of Registere Capacity	ed	Limit in BS EN 6		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.0117	0.0748	0.0265	0.1693	8%	8%	
3	0.0764	0.4881	0.1484	0.9481	21.6%	Not stated	

4	0.0052	0.0332	0.0095	0.0607	4%	4%
5	0.0816	0.5213	0.1362	0.8702	10.7%	10.7%
6	0.0050	0.0319	0.0082	0.0524	2.67%	2.67%
7	0.0773	0.4939	0.1114	0.7117	7.2%	7.2%
8	0.0065	0.0415	0.0078	0.0498	2%	2%
9	0.0570	0.3642	0.0983	0.6280	3.8%	Not stated
10	0.0067	0.0428	0.0077	0.0492	1.6%	1.6%
11	0.0378	0.2415	0.0802	0.5124	3.1%	3.1%
12	0.0065	0.0415	0.0075	0.0479	1.33%	1.33%
13	0.0208	0.1329	0.0541	0.3456	2%	2%
THD		1.990		1.754	23%	13%
PWHD		1.214		1.070	23%	22%

3. Power Quality - Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

Model: STH-8KTL-HS

				1				
		Starting	g		Stopping		Ru	nning
	d max	d c	d(t)	d max	d c	d(t)	Pst	Plt 2 hours
Measured Values at test impedance	0.30	0.25	0	0.79	0.73	0	0.19	0.19
Normalised to standard impedance	0.30	0.25	0	0.79	0.73	0	0.19	0.19
Normalised to required maximum impedance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65
Test Impedance	R		0.4	Ω	>	ΧI	0.25	Ω
Standard Impedance	R		0.24 * 0.4 ^	Ω	>	ΚI	0.15 * 0.25 ^	Ω
Maximum Impedance	R		NA	Ω	>	ΚI	NA	Ω

^{*} Applies to three phase and split single phase Power Generating Modules.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above. Normalised value = Measured value x reference source resistance/measured source resistance at test

point

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase system reference source resistance is 0.24 Ω

Three phase units reference source resistance is 0.24 Ω

[^] Applies to single phase Power Generating Module and Power Generating Modules using two phases on a three phase system

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test.

4. Power quality – DC inject Tests are to be carried out at Inverter has a current output in accordance with Annex A.	three defined powe of 217 A so DC lim	r levels ±5%. At 230 V a	50 kW three phase	Р
Model: STH-8KTL-HS				acatestas es y
Test power level	10%	55%	100%	
Recorded value in Amps	0.023	0.003	0.021	
as % of rated AC current	0.07%	0.01%	0.06%	
Limit	0.25%	0.25%	0.25%	
Model: STH-3.6KTL-HS	-		<u>'</u>	
Test power level	10%	55%	100%	
Recorded value in Amps	0.022	0.017	0.018	
as % of rated AC current	0.14%	0.11%	0.12%	
Limit	0.25%	0.25%	0.25%	

are to be carried out at three	should be carried out on a set on the voltage levels and at Regi the stated level during the tenton. 1.4.2.	stered Capacity. Vol	tage to be	Р
Model: STH-8KTL-HS			A STATE OF THE STA	
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)	
Measured value	0.9978	0.9983	0.9988	
Power Factor Limit	>0.95	>0.95	>0.95	
Model: STH-3.6KTL-HS			1	7
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)	12
Measured value	0.9959	0.9979	0.9976	
Power Factor Limit	>0.95	>0.95	>0.95	

Model: STH-8	BKTL-HS		ie .	*)		
Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.48Hz	20.36s	47.7 Hz 30 s	No trip
U/F stage 2	47 Hz	0.5 s	46.98Hz	0.836s	47.2 Hz 19.5 s	No trip
					46.8 Hz 0.45 s	No trip
O/F	52.0Hz	0.5s	52.02Hz	0.824s	51.8 Hz 120 s	No trip
					52.2 Hz 0.45 s	No trip

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Model: STH-8	KTL-HS					100000000000000000000000000000000000000
Function	Setting		Trip test	<i>i</i> .	"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5s	181.9V	2.840s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0s	265.5V	1.336s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5s	276.7V	0.836s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

The following	sub set of tes	sts should be re	corded in t	he followin	g table.			
Model: STH-8	BKTL-HS							
Test Power and imbalance	33% -5% Q	66% -5% Q	100% -5% P	33 +5	% % Q	66% +5% Q	100% +5% P	
Trip time. Limit is 0.5s	171.0 ms	161.0 ms	222.0 ms 10		1.0 ms	155.0 ms	220.0 ms	
Loss of Mair accordance w	rith Annex A.7	, Vector Shift S 7.1.2.6.	Stability te	st. This te	st should b	e carried out in		Р
Model: STH-8	KTL-HS							
Vector Shift		Start Frequer	псу	Change		Confirm	Confirm no trip	
Positive Vector	or Shift	49.0 Hz		+50 degrees		No trip		
I OSILIVE VECL		=0.011	- 50 degrees No trip					
Negative Vec	tor Shift	50.0 Hz		- 50 deg	grees	140 trip		
Negative Vec	s Protection	, RoCoF Stabil	ity test: Th	A TOTAL CHIEF STATE OF THE PARTY OF THE PART	CONTRACTOR OF THE		ordance	Р
Negative Vec	s Protection 7.1.2.6.		ity test: Th	A TOTAL CHIEF STATE OF THE PARTY OF THE PART	CONTRACTOR OF THE		ordance	Р
Negative Vec Loss of Main with Annex A Model: STH-8	s Protection 7.1.2.6.			A TOTAL CHIEF STATE OF THE PARTY OF THE PART	ould be car			Р
Negative Vec Loss of Main with Annex A	s Protection 7.1.2.6. BKTL-HS	, RoCoF Stabil		nis test sho	ould be car	ried out in acco		P

The test should be carried o	out in accordance v	with Annex A.7.1	.3.			
Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.						
Alternatively, simulation resu	ılts should be note	d below:				
Model: STH-8KTL-HS				THE SHAPE STREET, STRE		
Test sequence at Registered Capacity >80%	Measured Active Power Output (W)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradien	
Step a) 50.00 Hz ±0.01 Hz	8013.68	50.00	-	Photovoltaic array simulator	-	
Step b) 50.45 Hz ±0.05 Hz	7960.13	50.45	-		-	
Step c) 50.70 Hz ±0.10 Hz	7556.41	50.70	11.88		_	
Step d) 51.15 Hz ±0.05 Hz	6842.21	51.15	10.73		0,=	
Step e) 50.70 Hz ±0.10 Hz	7547.50	50.70	11.63		-	
Step f) 50.45 Hz ±0.05 Hz	7948.26	50.45	-		-	
Step g) 50.00 Hz ±0.01 Hz	8007.90	50.00	-	1	10%	
Test sequence at Registered Capacity 40- 60%	Measured Active Power Output (W)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradien	
Step a) 50.00 Hz ±0.01 Hz	3998.67	50.00	-	Photovoltaic array simulator	-	
Step b) 50.45 Hz ±0.05 Hz	3938.12	50.45	-		-	
Step c) 50.70 Hz ±0.10 Hz	3526.31	50.70	11.65		-	
Step d) 51.15 Hz ±0.05 Hz	2803.82	51.15	10.57		-	
Step e) 50.70 Hz ±0.10 Hz	3517.56	50.70	11.41		-	
Step f) 50.45 Hz ±0.05 Hz	3924.23	50.45	- '		_	
Step g) 50.00 Hz ±0.01 Hz	3994.06	50.00	_	1	10%	

The resulting overall tolerance range for a nominal 10% Droop is $\pm 2.8\%$ and $\pm 1.5\%$, ie a Droop less than 12.8% and greater than 8.5%.

10. Protection	n – Re-connection	timer.			P
Model: STH-8	KTL-HS				
Test should p voltage and from	rove that the recon equency to within th	nection sequence	starts after a mini	imum delay of 20	s for restoration of
Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.			
30 s	35 s	At 1.16 pu (266.2 V)	At 0.78 pu (180.0 V)	At 47.4 Hz	At 52.1 Hz
	hat the Micro- es not re-connect.	No reconnection	No reconnection	No reconnection	No reconnection

11. Fault level contribute Annex A.7.1.5.	ion: These tests shall be carried	d out in accordance with EREC G99	Р	
For Inverter output			F1 5	
Model: STH-8KTL-HS				
Time after fault	Volts	Amps		
20ms	53.5 V	8.17 A		
100ms	52.3 V	4.68 A		
250ms	52.2 V	3.53 A	3.53 A	
500ms	52.1 V	3.05 A		
Time to trip	0.5s	In seconds		

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.7	
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	N/A
13. Wiring functional tests: If required by para 15.2.1.	
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	N/A
14. Logic interface (input port).	
Confirm that an input port is provided and can be used to shut down the module.	Yes
Additional comments.	
N/A.	